Introduction to Wire Antennas

Marc Tarplee, N4UFP ARRL SC Section Manager

Part I

Introduction

What is an Antenna?

- An antenna is a device that:
 - Converts RF current applied to its feed point into electromagnetic radiation.
 - Intercepts energy from a passing electromagnetic wave, which appears as an RF voltage across the antenna's feed point.
- Any object that can carry an electric current can act as an antenna.

Transmitting Antenna

Receiving Antenna

Types of Antennas

- The are some of the many types of antennas in use
- This presentation focuses on wire antennas

Basic Antenna Properties

Radiation Pattern

- Variation of antenna radiation with direction
- Most common 2D patterns: azimuth (parallel to ground) and elevation (perpendicular to ground)
- Directivity (Gain)
 - Ratio of maximum radiation of an antenna under test to a reference antenna
- Input Impedance
 - Measured at the antenna's input varies with frequency
- Bandwidth
 - Range frequencies over which SWR <2.0
- Reciprocity
 - Antennas exhibit the same characteristics when receiving or transmitting

Part II

The Dipole

The Simplest Antenna

- A dipole antenna is created when we break a wire somewhere along its length and feed RF into it.
- A dipole's properties are determined by:
 - Relative length of the wire in wavelengths
 - Position of the feed point
 - Diameter of the wire
- This definition is very general, but there are some specific types of dipoles worth looking at more closely
 ARRL The national association for ARRL The

The Half-Wave (λ/2) Dipole

- A dipole whose length is approximately λ/2
 has some useful properties:
 - Its input impedance is generally between 30 and 80 ohms, so it can be fed directly with 50 or 75 ohm coaxial cable.
 - The physical length is manageable (between 16.5 and 133 feet on the HF bands)
 - It can be hung between two supports or from a single center support (inverted-vee)

(λ/2) Dipole Properties

Design Table: λ/2 Dipole

BAND	LENGTH (#14 THHN WIRE)		
160 (1.83 MHz)	255 ft 9 in		
80 (3.8 MHz)	132 ft 2 in		
40 (7.1 MHz)	65 ft 11 in		
30	46 ft 3 in		
20	33 ft 0 in		
17	25 ft 10 in		
15	22 ft 1 in		
12	18 ft 9 in		
10 (28.4 MHz)	16 ft 6 in		

Variations on a Theme: 1λ , 1.28λ and $3\lambda/2$ Dipole

- 1λ dipole (2 half waves in phase)
 - Wire length is ~0.95 λ
 - Input Z~5000 Ω could be matched with $\lambda/4$ 450 Ω series section
 - Directivity = 1.5 dBd
- 1.28 λ dipole
 - Provides maximum broadside gain from a single wire, ~ 3dBd
 - Input Z = 200-j1000 Ω (can be matched with 3 λ /16 450 Ω series section)
- 3λ/2 dipole (original G5RV)
 - Provides some gain in several directions
 - Input Z = 110 Ω (can be matched with $\lambda/4$ 75 Ω series section)

1 λ , 1.28 λ and 3 λ /2 Dipoles

1.28 λ 3λ/2

Design Table: 1λ, 1.28 λ and 3λ/2 Dipole

	LE	ENGTH (#14 THHN WIR	E)
BAND	1λ DIPOLE	1.28λ DIPOLE	1.5λ DIPOLE
160 (1.83 MHz)	517 ft 0 in	677 in 7 in	775 ft 6 in
80 (3.8 MHz)	248 ft 4 in	326 ft 4 in	372 ft 6 in
60	175 ft 2 in	224 ft 2 in	262 ft 9 in
40 (7.1 MHz)	132 ft 2 in	169 ft 2 in	198 ft 3 in
30	92 ft 10 in	118 ft 10 in	139 ft 3 in
20	66 ft 0 in	84 ft 6 in	99 ft 0 in
17	51 ft 8 in	66 ft 2 in	77 ft 6 in
15	44 ft 0 in	56 ft 4 in	66 ft 0 in
12	37 ft 6 in	48 ft 0 in	56 ft 3 in
10 (28.4 MHz)	33 ft 0 in	42 ft 5 in	49 ft 6 in

	SERIES MATCHING SECTIONS		
DAND	1λ DIPOLE -450 Ω	1.28λ DIPOLE - 450 Ω	
BAND	LINE	LINE	RG11
160 (1.83 MHz)	120 ft 3 in	83 ft 7 in	88 FT 9 IN
80 (3.8 MHz)	57 ft 11 in	40 ft 3 in	42 ft 9 in
60	41 ft 1 in	26 ft 7 in	30 ft 5 in
40 (7.1 MHz)	31 ft 0 in	21 ft 7 in	22 ft 11 in
30	21 ft 9 in	15 ft 1 in	16 ft 0 in
20	15 ft 6 in	10 ft 10 in	11 ft 6 in
17	12 ft 2 in	8 ft 6 in	9 ft 0 in
15	10 ft 4 in	7 ft 2 in	7 ft 8 in
12	8 ft 10 in	6 ft 2 in	6 ft 6 in
10 (28.4 MHz)	7 ft 9 in	5 ft 5 in	5 ft 9 in

The ZS6BKW Dipole

- This antenna consists of \sim 93 ft of #14 THHN wire fed in the center through a 39ft 3in section of 450 Ω ladder line:
- This antenna is a good match (SWR < 2.0) to 50 Ω coax on the following bands: (other bands require a matching network)
 - Bottom 100 KHz of 80m.
 - 40m
 - -20m
 - -17m
 - 12m
 - 10m

If you can only put up one antenna, this is the one.

Part III

The Vertical Monopole (Marconi Antenna)

Reflections and Images

- A vertical monopole (Marconi) antenna is a vertical wire fed against ground.
- The ground surrounding the antenna is very important - the monopole's image in the ground supplies the "missing half" of a vertical dipole
- RF reflections from the ground also greatly influence the antenna's impedance and radiation pattern

The Importance of a Good Ground

- The ground is part of the vertical antenna, not just a reflector of RF, unless the antenna is far removed from earth (usually only true in the VHF region)
- RF currents flow in the ground in the vicinity of a vertical antenna. The region of high current is near the feed point for verticals less that λ /4 long, and is ~ λ /3 out from the feed point for a λ /2 vertical.
- To minimize losses, the conductivity of the ground in the high current zones must be very high.
- Ground conductivity can be improved by using a ground radial system, or by providing an artificial ground plane.
- Ground planes are most practical in the VHF range. At HF, radial systems are generally used.

Ground Radials

- Ground radials may be laid on the ground and should not be insulated from ground
- The radial wires should run radially out from the antenna feed point.
- The length of each radial is dependent on the number of radials
- In general, more short radials are preferable to a few long ones

Optimal Ground Radial Length

Ground Losses

The Quarter-Wave (λ/4) Monopole

- The radiator is a vertical wire ~ λ/4 long
- Input $Z = Z_{ANT} + R_{GND} + R_{REF} (35-70\Omega)$
- Efficiency η = |Z_{ANT} | /|Z_{IN}| often much less than 100%
- The big advantage of the λ/4
 monopole is that it radiates better than
 a dipole at low angles (particularly on
 the lower bands)

λ/4 Monopole Radiation Patterns

- The antenna is omnidirectional in the horizontal plane
- Radiation in the vertical plane is concentrated at low angles
- Increasing ground conductivity decreases the angle of maximum radiation in the vertical plane

Design Table - λ/4 Monopole

BAND	RADIATOR LENGTH (#14 THHN)
160	127ft 10 in
80 (3.60 MHz)	65 ft 0 in
75 (3.90 MHz)	60 ft 0 in
60	43 ft 9 in
40 (7.1 MHz)	33 ft 0 in

 Data is only included for the low bands, because on the higher HF bands, in most cases, a horizontal wire antenna such as a dipole is a better choice.

The Inverted-L Monopole

- The radiator is a vertical wire that has been folded to fit available supports. Overall length A+B ~ 0.3λ
- Typically the vertical section is ~λ/8
- Zin $\sim 30\Omega$ 75Ω
- Radiation patterns are similar to a λ/4 vertical, with a small amount of directivity in the horizontal pattern (typically less than 2 dB)

Design Table – Inverted-L

BAND VERTICAL SECTION LENGTH HORIZ. SECTION LENGTH
160 65 ft 9 in 77 ft 10 in
80 (3.60 MHz) 31 ft 11 in 37 ft 0 in

Data is only included for the 160 and 80 meter bands, because the height required for a λ/4 vertical for the 60 and 40 meter bands is less and doesn't usually necessitate installation as an inverted-L

Part IV

Antenna Measurements

Characterizing Antenna Performance

- Ideally, we would like to know at least three things about an antenna:
 - Radiation Pattern
 - Input Impedance
 - Bandwidth
- Unfortunately, only one of these, bandwidth, is easy to measure

Making Antenna Performance Measurements

- Radiation patterns can be very useful, but are very difficult to measure. An antenna test range is required for accurate measurements.
- An impedance bridge or vector network analyzer (\$\$\$) is required for Input Z measurements
- Bandwidth can be easily be determined from SWR measurements.

SWR

- It turns out that SWR is the simplest, cheapest measurement we can make on an antenna system.
- SWR is the ratio of maximum to minimum voltage on a transmission line.
- Most amateur stations have equipment for measuring SWR.
- What do SWR measurements tell us?
 - The degree of mismatch between the antenna and feed line
 - The bandwidth of the antenna system
- As with any measurement, some interpretation is required to get useful interpretation from SWR data

SWR – Mathematical Relationships

Max Voltage
$$V_{\text{max}=\sqrt{2PZ_0*(SWR)}}$$

Minimum Voltage $\min = \sqrt{\frac{2PZ_0}{(SWR)}}$

$$V_{\min = \sqrt{\frac{2PZ_0}{(SWR)}}}$$

Reflection Coefficient $|
ho| = \sqrt{\frac{P_R}{P_F}}$

• SWR $SWR = \frac{1 + |\rho|}{1 - |\rho|}$

Measuring SWR

- Some transceivers have built in SWR meters. To measure SWR all one need do is look at the display
- An external SWR meter may also be used. There are two types:
 - Single needle unit two step process
 - Meter sensitivity is adjusted to make meter read full scale on forward power setting.
 - In reverse power setting, SWR is read off meter scale
 - Crossed-Needle unit one step process
 - SWR is indicated by point where forward and reverse power meter needles cross
- SWR is measured between the output of transmitter and the load (including matching networks)

Power and SWR

- A power meter that can measure forward and reflected power may also be used to determine SWR.
 - Measure the forward power (P_F) and reverse power (P_R)
 - Use the following equation to compute SWR:

$$SWR = \frac{1 + \sqrt{\frac{P_R}{P_F}}}{1 - \sqrt{\frac{P_R}{P_F}}}$$

Example: P_F = 108W P_R =12W

$$SWR = \frac{1 + \sqrt{\frac{P_R}{P_F}}}{1 - \sqrt{\frac{P_R}{P_F}}} = \frac{1 + \sqrt{\frac{12}{108}}}{1 - \sqrt{\frac{12}{108}}} = \frac{1 + \sqrt{.111}}{1 - \sqrt{.111}} = \frac{1 + .333}{1 - .333} = \frac{0.667}{0.333} = 2.0$$

Using an SWR meter to set up and antenna matchbox

- These instructions apply to modern matchboxes using a T-network.
 - Set the "TRANSMITTER" and "ANTENNA" controls to their midrange position
 - Measure the SWR.
 - While watching the SWR meter, set the "INDUCTANCE" control to the value that results in minimum SWR
 - Then adjust the "TRANSMITTER" and "ANTENNA" controls until the SWR < 2.0
 - If SWR cannot be reduced to less than 2.0, change the "INDUCTANCE" setting and try again.

Bandwith and SWR

- Once the antenna and line are matched to the transmitter, one can use the SWR meter to determine the antenna system bandwidth.
 - Use the SWR meter to determine the lower frequency (F_L) at which SWR = 2.0
 - Use the SWR meter to determine the higher frequency (F_H) at which SWR = 2.0
 - The bandwidth can be computed using the following equation:

$$BW = F_H - F_L$$

• Example: $F_L = 3.64 \text{ MHz } F_H = 3.78 \text{ MHz}$

$$BW = F_H - F_L = 3.78 - 3.64 = 0.14 MHz = 140 KHz$$

How important is SWR? Is high SWR bad?

- The fact we measure high SWR for a particular antenna system, DOES NOT MEAN that the antenna is not radiating!! The antenna gets all the transmitter's power, less any line loss.
 - Example: we transmit a1.8 MHz, 100W carrier into a short dipole antenna through 65 feet of RG-8 coax, whose loss is 0.17 dB.
 The SWR at the antenna is 19.0.
 - The forward power is 383W
 - The reflected power is 310 W
 - The power going into the antenna is 73W

SWR and Line Loss

- In the example on the last slide, we saw that 100 W transmitted into 65 feet of RG-8 connected to an antenna whose SWR = 19 resulted in 73 W reaching the antenna.
- If the SWR had been 1.0, 96W would have reached the antenna.
- Operating transmission lines under high SWR increases line loss!

SWR and Line Selection

- Because coaxial cable is relatively lossy, it should only be used in situations where SWR < 3.0 because:
 - Attenuation in coax rises quickly with increasing SWR
 - High voltages associated with high SWR may break down the dielectric
- In situations where the SWR > 3.0, use open-wire line or ladder line
 - It has much lower loss, even when the SWR > 10.0
 - Dielectric breakdown is much less likely

Is low SWR always good?

- Absolutely not!!
- Consider a dummy load.
 - It is designed to show SWR = 1.0 over a wide range of frequencies
 - It is designed NOT TO RADIATE
- Not convinced? Consider a mobile antenna used for 75 phone operation, whose $R_{IN} = 4$ ohms.
 - Poor installation Z_{LOAD} = R_{IN} + R_{GROUND} = 4Ω + 50Ω = 54Ω . SWR = 1.1 η=7.4%
 - Good installation Z_{LOAD} = R_{IN} + R_{GROUND} = 4Ω + 20Ω = 24Ω . SWR = 2.1 η=17%
 - The antenna with higher SWR is actually more than twice as efficient!

SWR Recap

- SWR is the ratio of maximum to minimum voltage on a transmission line.
- Possible values for SWR range from 1.0 (perfect match)
 to ∞ (perfect mismatch)
- Line losses increase with increasing SWR
- High SWR is not necessarily bad
- Low SWR is not necessarily good
- Coaxial cable is a good feed line choice when SWR <3
- Open wire line is a good choice when SWR > 3.0

Questions and Comments

73 Marc N4UFP

